

Transport Canada Transports Canada Safety and Security Sécurité et sûreté

Civil Aviation

Aviation civile

TP 12878E

Instructor Guide

GPS

First Edition

January 1997

Canadä

Introduction

Occasionally there are technical innovations in aviation that propel the industry forward at accelerated rates. Past examples of such quantum leaps are the invention of the aileron, the variable pitch prop and the jet engine. Today's quantum leap is Global Positioning System (GPS). Never before has there been a navigation aid available capable of providing pilots with such precise navigation information in all phases of flight.

However, GPS receivers require more pilot attention than traditional VOR or ADF receivers, particularly during the approach phase. They are essentially navigation management computers, with many features, modes and controls. Before flying a standalone approach in instrument conditions, a pilot must be completely familiar with GPS fundamentals, system operation and the approach procedure to be flown.

Commercial and corporate operators are required to have approved training programs to qualify for GPS stand-alone approach approval.

General aviation pilots are not required to undergo an approved training program nor is there any special licence endorsement to qualify them to conduct GPS stand-alone approaches. Nevertheless, general aviation pilots are cautioned about the level of complexity of GPS approach systems. It is strongly recommended that pilots take advantage of GPS receiver stimulation modes, commercially available training and every opportunity to fly practice approaches in visual conditions. Pilots are also encouraged to develop and adopt standard GPS operating procedures for enroute, approach and missed approach phases of flight.

General Aviation pilots flying aircraft equipped with GPS receivers can anticipate being asked to demonstrate their ability to operate the receiver during Flight Tests in all phases of flight, including GPS stand-alone or overlay approaches.

1

ORGANIZING THE TRAINING

Although GPS receivers are complex computers capable of many functions, this instructors guide is designed for teaching the student only those functions necessary to enable him/her to depart from point A, navigate to point B, hold at point B, carry out an approach, overshoot and go to the alternate under Instrument Flight Rules (IFR). The guide is designed for GPS receivers that have been certified for IFR operations in accordance with Technical Standard Order (TSO) C-129. However, instructors may find it useful for instructing students on other non TSO C-129 certified GPS receivers.

Instructors will find that a combination of classroom instruction and hands on training will work best in teaching students how to operate a GPS receiver. It is recommended that an introductory flight with the instructor demonstrating the receiver and its capabilities will help give the student an appreciation for the level of skill required to operate the receiver efficiently and safely. The use of a GPS simulator or the actual receiver in simulation or "take-home mode" is highly recommended. Time spent in the classroom will pay dividends in the air.

Try hard not to overwhelm the student with facts and figures about the GPS system in general. Teach them the basics and instill the desire to learn more about the system on their own. It is assumed that once the student is proficient in conducting the basic operations, he/she will have a thirst to learn the other functions of the receiver as opposed to just using the receiver as a "Direct-to box".

Throughout the training it should be stressed that only approaches retrieved from the database are approved for Instrument Flight Rules (IFR) flight. Instructors shall discourage students from inventing their own approaches and shall not demonstrate how to create or fly a user invented approach at any time.

PREFLIGHT PREPARATION

Objective

To facilitate the student learning:

- the background knowledge necessary to operate the GPS receiver in all phases of flight

- the interface between GPS and other cockpit instruments

Motivation

A good overall knowledge of GPS will pique the interest of students and enhance their learning experience. A secondary aim is to motivate the student to learn more about the system on their own.

How the GPS integrates with other cockpit instruments is critical to the safe and efficient operation of the aircraft.

Essential Background Knowledge

Explain the general principles of GPS operation:

- an overview of the system, including the number of satellites, a general description of the orbits and area of coverage,
- an overview of the general principles of how the receiver determines its position,
- an overview of Receiver Autonomous Integrity Monitoring (RAIM),
- an insight into other applications,
- an overview of similar systems that have been put into service by other nations

Explain the advantages of GPS, including its accuracy

Explain the limitations and possible errors of the system, including database errors and interference from VHF emissions

Explain the basic components of a GPS installation:

- sensor/navigation computer,
- database,
- antenna

Explain the function of the various modes of the GPS receiver

Explain how the GPS interfaces with the CDI/RMI/HSI, if equipped

Explain how the GPS interfaces with the Autopilot/Flight Director, if equipped

Explain how the GPS interfaces with other flight management systems, if equipped

Explain the terms and conditions of the approval to use GPS in Canada

Advice to Instructors

Most manufacturer "Pilot Guides" contain the essential background knowledge and system configuration information to satisfy the requirement of this task.

Remember that students do not have to master all the navigational and other functions of the GPS receiver in order to operate it competently. Ensure they have a thorough knowledge of the functions required to use the receiver for flight in IMC conditions and encourage them to learn the other functions as need or desire dictate.

Use a receiver simulator or the simulation mode of the receiver to demonstrate the various modes and functions of the receiver prior to starting instruction in the aircraft if possible.

Use the aircraft itself on battery power or GPU, if simulator not available.

Review the Aircraft Flight Manual or Flight Manual Supplement describing the receiver installation and emphasizing any restrictions .

Take the student to the aircraft and point out the various components of the installation including the receiver, the antenna and, if equipped, the various annunicators, the CDI, RMI, or HSI and the autopilot/flight director.

Use the attached AIP Special Aviation Notices to explain the terms and conditions of the approval to use GPS in Canada.

Instruction and Student Practice

Demonstrate how to turn the GPS receiver on and the general functions of each of the modes, then allow ample time for the student to experiment with the receiver before beginning the actual operational instruction.

Completion Standards

The student shall be able to:

- describe the Global Positioning System in general terms

- describe the major components of the GPS installation and any restrictions contained in the Aircraft Flight Manual or Flight Manual Supplement

- describe the phases of flight for which the equipment is approved

- describe the terms and conditions of the approval to use the equipment in Canada

DEPARTURE

Objective

To facilitate the student learning:

- to initialize the GPS receiver
- to create a flight plan in the GPS from the point of departure to the destination
- to take-off and fly the aircraft to the first waypoint enroute

Motivation

Preparation for departure is the foundation of a safe and effective flight. Pilots must be able to initialize and verify the functioning of the GPS receiver and accurately program it while ensuring that the essential duties of operating the aircraft are conducted safely.

Essential Background Knowledge

Explain how to turn the GPS receiver on

Explain how to operate the GPS receiver controls

Explain how to complete the receiver initialization with pilot inputs, if required

Explain the function of the flight plan (FPL) mode of the GPS receiver

Explain how to create a flight plan in the GPS

Explain how to confirm whether RAIM will be available for the approach at destination

Explain how to modify the flight plan by deleting or inserting waypoints

Explain how to create user-defined waypoints

Explain how to add a SID to the flight plan (not all receivers have this capability)

Explain airspace advisories and alerts

Explain the importance flying the aircraft at all times and of not fixating on the GPS operation

Advice to Instructors

As this phase tends to be time consuming, the more time spent in the classroom learning the programming functions of the receiver the better.

Ensure that students don't get so involved in learning to use the GPS receiver that they forget to fly the aircraft. This applies to all phases of the flight.

Using this system, especially in the early stages of the learning curve, tends to draw pilot attention into the cockpit, be careful, and remember to keep a close eye out for other aircraft.

Ensure that students cross check GPS positions with other navigational equipment. Databases have been known to be wrong. Moreover, there is a regulatory requirement to verify the coordinates of database generated waypoints against flight information publications when conducting GPS stand-alone approaches.

Air Instruction and Student Practice

Have the student operate the GPS receiver as much as possible. The student will be slow at first and will make mistakes, resist speeding up the process by jumping in to help. Allow the student to make mistakes and the time to figure out where he/she went wrong, within reason.

Emphasize the need to be accurate when information, especially waypoint coordinates, are entered into the receiver. As input errors are the largest single source of system errors, have the student double check all information as it is entered.

Completion Standards

The student shall be able to:

- turn on and operate the GPS receiver
- monitor and verify the receiver self test and initialization

- verify the data displayed on the receiver self test page is the same as the data being displayed on the aircraft instruments interfaced with the receiver, if applicable

- verify the external annunicators illuminate as designed, if any
- verify the database is up to date
- complete the receiver initialization with pilot inputs, if required

- create a flight plan in the GPS receiver
- modify the flight plan, including inserting and deleting waypoints
- create user- defined waypoints
- if the receiver is capable, retrieve airport information from the database
- add a SID to the flight plan, if the point of departure has one

- take-off and fly the SID or ATC clearance to intercept the track to the first waypoint enroute

- maintain track to the first waypoint enroute within 1/2 scale deflection of the track bar $% \left(1/2\right) =0$

- maintain assigned altitudes within 100 feet
- understand the function of the message page and to take appropriate action

ENROUTE PROCEDURES

Objective

To facilitate the student learning:

- to navigate from the point of departure to the destination using GPS

Motivation

The introduction of GPS has revolutionized how pilots navigate enroute. It is essential that pilots acquire and maintain a high standard of operating skill for this phase of flight.

Essential Background Knowledge

Explain the functions of the navigation (NAV) mode of the GPS receiver

Explain the moving map display screen symbology, if applicable

Explain the track bar sensitivity parameters in NAV mode

Explain the "Direct TO" (DTO) function of the GPS

Explain how retrieve information about the nearest suitable airport to the route of flight

Explain how to add Standard Terminal Arrival Routes (STAR) to the flight plan

Advice to Instructors

Take care not to become so involved in demonstrating the functions and explaining the features of the GPS that your lookout is compromised, especially immediately after take off, in the climb, during the transition to the approach and during the missed approach.

If there are no airports near the training area with a STAR, instructors should get the student to input a flight plan to an airport with a STAR even though that airport is beyond the range of the aircraft. Once programmed, the student can then modify the flight plan to fit the aircraft capability.

Sometime during the exercise give the student an emergency which requires him/her to divert to the nearest suitable airport. Be alert to ensure the student takes care of the emergency and then programs the GPS. Do not allow the student to be so concerned with programming the GPS that aircraft safety becomes a secondary consideration.

Air Instruction and Student Practice

The student should fly the aircraft to several waypoints enroute so that he/she can practice normal enroute navigation techniques including determining fuel flows, making position reports and calculating ETAs. At least three legs of 10 to 15 minutes should be enough for this practice.

Ensure the student practices going direct to a waypoint and adding a STAR to the flight plan.

Completion Standards

The student shall be able to:

- navigate from the point of departure to destination using GPS for guidance
- describe the track bar sensitivity parameters in NAV mode
- intercept a track to a waypoint
- maintain track within 1/2 deflection of the track bar
- maintain assigned altitudes within 100 feet
- delete or add waypoints to the flight plan
- create user-defined waypoints
- program and fly "Direct TO" (DTO) a waypoint
- divert to the nearest suitable airport in the event of an emergency
- retrieve airport information from the GPS database
- add a STAR to the flight plan

HOLDING PROCEDURES

Objective

To facilitate the student learning:

- to program a hold in the GPS receiver, if capable
- to execute holding procedures using GPS

Motivation

The ability to execute a hold is essential for all pilots operating under IFR.

Essential Background Knowledge

Explain the various types of holds the student may encounter when flying IFR

Explain how to add a hold to the flight plan, if capable

Advice to Instructors

Either give the student a simulated hold clearance or ask ATC to issue one.

Ensure the student is able to input and execute an enroute, NDB, VOR and a DME hold.

If the hold entry is executed on autopilot, question the student to ensure that he/she has correctly anticipated the aircraft track.

Air Instruction and Student Practice

Ensure the student practices a least one of each type of hold, if practicable.

The direction of entry should be varied so that the student can practice the recommended hold entry procedures found in the Instrument Procedures Manual.

Completion Standards

The student shall be able to:

- add a hold to the flight plan in flight

- activate a hold

- execute a holding procedure using GPS

- take prompt corrective action if the aircraft does not perform as anticipated during an autopilot hold entry

APPROACH PROCEDURES

Objective

To facilitate the student learning:

- to retrieve and arm an approach procedure from the GPS database
- to execute an approach using GPS

Motivation

Within 20 years all IFR terminal navigation will likely be conducted using GPS as the primary navigation aid. Pilots wishing to fly in this environment will have to have a thorough understanding of the system, its limitations and use.

Essential Background Knowledge

Explain how to transition from the enroute procedures to the approach procedures using GPS for guidance

Explain that approaches must be retrieved from a current database and cannot be created by the pilot inputting waypoints

Explain how to add approaches to the flight plan

Explain how to arm approaches

Explain how to change or delete an approach once added to the flight plan

Explain the various sensitivity parameters of the track bar during approaches and how to confirm that they have changed at the appropriate time

Explain the Technical Standard Order (TSO) C-129 requirement for a Receiver Autonomous Integrity Monitoring (RAIM) check

Explain how to do a RAIM check

Explain what to do if the system fails the RAIM check

Explain the cockpit indications, if any, and what to do if GPS integrity is loss during the approach, before and after the Final Approach Waypoint (FAWP)

Explain how to verify approach waypoints

Explain how to conduct GPS approaches

Advice to Instructors

The transition from enroute procedures to GPS approaches should be conducted exactly the same as for traditional navigation aids. Instructors should emphasize the importance of planning the approach in a methodical and deliberate manner so that the pilot can anticipate and react smoothly to ATC instructions.

Review the AIP Special Aviation Notice dated February 1, 1996 (IFR Conditional Approval of GPS Operations) with the student to ensure he/she understands the certification conditions respecting GPS approaches under IFR and the requirements of TSO C-129.

The accuracy of GPS depends on valid waypoint coordinates. The fact that GPS is used as the source of guidance for approaches makes the validity of coordinates even more important. Almost every pilot who has used area navigation systems can recall database errors. This obviously cannot be tolerated with approach waypoints, so the deliberate verification of waypoints in accordance with direction provided in the GPS Supplement to the Aircraft Flight Manual is essential. At the very least, one waypoint should be verified against the coordinates for the waypoint in a published flight information publication and other waypoints verified by bearing and distance from the confirmed waypoint.

Air Instruction and Student Practice

The student should practice GPS stand alone and overlay approaches until he/she can demonstrate to the instructor that he/she can do the approaches safely and effectively.

Completion Standards

The student shall be able to:

- transition from enroute procedures to terminal procedures including pre-landing and approach checks, briefings, management of approach aids and adherence to ATC clearance

- add approaches to the flight plan from the GPS database

- change or delete an approach that has been added to the flight plan

- arm approaches

- describe the various sensitivity parameters of the track bar during approaches

- conduct a RAIM check

- understand the certification conditions imposed by TSO C-129 respecting GPS approaches, the operational limitations imposed by the Flight Manual Supplement and the terms and conditions of the Canadian approval to fly GPS approaches (see the AIP attachments)

- verify approach waypoints against an independent source

- select and verify cockpit navigation sources

- select and verify the Automatic Flight Control guidance source switches if equipped

- establish the aircraft on the required track

- maintain the track within 1/2 deflection of the track bar

- maintain published or cleared vertical navigation minima within 100 feet

- identify waypoint passage

-execute approaches to minima using GPS for guidance

7 MISSED APPROACH PROCEDURES

Objective

To facilitate the student learning:

- to retrieve and arm the missed approach procedure from the GPS database
- to execute the missed approach using the GPS

Motivation

Pilots flying under IFR must be prepared to execute a missed approach on all approaches.

Essential Background Knowledge

Explain how activate a missed approach

Explain how to execute a missed approach

Advice to Instructors

The missed approach should be practiced frequently to ensure the student can do it efficiently and safely. The transition from the landing configuration to the go around, the completion of after take off aircraft checks, conducting frequency shifts for radio calls and activating the missed approach all draw pilot attention into the cockpit during this critical regime of flight. Extreme care must be taken to ensure a proper lookout is maintained for other traffic.

Air Instruction and Student Practice

The student should execute a missed approach on every practice approach. It is assumed that the student knows how to land the aircraft.

Completion Standards

The student shall be able to:

- activate the missed approach

- execute the missed approach procedure including after takeoff checklist, management of navigation aids and adherence to ATC clearance

- establish the aircraft on the missed approach track
- maintain the track within 1/2 deflection of the track bar
- maintain published or cleared vertical navigation minima within 100 feet
- identify waypoint passage
- -execute missed approaches using GPS for guidance

8

ALTERNATE

Objective

To facilitate the student learning:

- to add the routing to an alternate to the flight plan either in flight or prior to departure

- to execute a diversion to an alternate using GPS

Motivation

Pilots must always be prepared to proceed to an alternate when operating an aircraft under IFR.

Essential Background Knowledge

Explain how to add the alternate routing to the flight plan either on the ground prior to departure or in flight

Explain how to change flight plans to get to the alternate, for those receivers that will not permit an alternate to be added to the flight plan

Explain that conventional NAVAIDS must be available for a diversion to an alternate should the GPS fail or signals be lost

Advice to Instructors

Impress upon the student that they must be prepared to divert to an alternate at any time, irrespective of the weather.

Air Instruction and Student Practice

Ensure the student practices setting course to an alternate at least once during training.

Completion Standards

The student shall be able to:

- add the routing to an alternate to the flight plan either in flight or prior to departure

- to execute a diversion to an alternate using GPS for guidance

SYSTEM MALFUNCTIONS

Objective

To facilitate the student learning:

- to recognize a system malfunction
- to take appropriate action in the event of a system malfunction

Motivation

It is extremely important that pilots who are operating database dependent navigation equipment be aware that they must be vigilant and monitor the information and guidance that is being provided by their aircraft's navigation systems. Anomalies have been detected which are a result of software problems or a result of the way procedures and information has been encoded into the database of some GPS equipment. These anomalies may be transparent to the user until such time as the aircraft departs from its expected route or path of flight. It is essential that pilots confirm the equipment is going to respond as expected, by comparing the database information with the hard copy procedure in the Canada Air Pilot and other flight information publications. The requirement to make this comparison is specified in the GPS avionics Flight Manual Supplement.

Essential Background Knowledge

Explain how to verify database waypoints. The verification method used is at the discretion of the instructor provided it is effective. An acceptable method is to compare the database coordinates of a waypoint with the coordinates of the waypoint that are published in a flight information publication and then verify other waypoints by bearing and distance from the verified waypoint. Separate waypoint verifications should be carried out for enroute and terminal procedures.

Review the RAIM check and the appropriate actions.

Review the appropriate action for the illumination of a "GPS Integrity" light.

Explain the appropriate action for a GPS receiver power failure.

Advice to Instructors

GPS system performance is such that it may lead students to develop a false sense of security. Ensure that students cross check the system with conventional navigation aids and occasionally give them a system failure to ensure they can smoothly transition to traditional navigation methods.

The student must diligently monitor the performance of their equipment and verify the accuracy of each selected waypoint using current approved hard copy data prior to using their equipment for IFR navigation. If there are any discrepancies between the information in the database and the published hard copy, then the student must ensure they follow the hard copy procedure.

Air Instruction and Student Practice

Some systems have malfunction reports embedded in their databases, if so, have the student retrieve a report and record the information provided.

Completion Standards

The student shall be able to:

- recognize a system malfunction
- take the appropriate action in the event of a system malfunction

POST FLIGHT PROCEDURES

Objective

To facilitate the student learning:

- post flight "GPS Problem Report" preparation and handling

Motivation

As GPS is new technology, it is important that pilots using the system report any difficulties or anomalies so that others can benefit and corrective action can be taken.

Essential Background Knowledge

Review AIP Aviation Notice dated July 18, 1996, attached

Advice to Instructors

Students should be encouraged to take an active part in reporting system difficulties and anomalies. Reviewing the AIP notice and the "GPS Problem Report" form and having the student fill out a report form for a loss of signal integrity during an approach should achieve the aim.

Review the completed form for completeness and accuracy.

Completion Standards

The student shall be able to:

- complete post flight "GPS Problem Report" form and know where to send it